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A Note on Switching between Transformed and Untransformed 

Regression Systems1 

Objective 

The objective of this note is to discuss properties of predictions ˆ iy  in its original measurement units 

when the intermediate predicted values ( ) ( )ˆ ( | )i i iy E y  x  are based on a regression model in which    

was transformed by a Box-Cox transformation ( ) ( ; )i iy g y  . The underlying problem is that the 

distributional properties of ( )

iy   in transformed system are different from those in the untransformed 

system. Therefore, a direct remapping leads to predictions of conditional medians 

 1 ( )ˆ( | )i i imedian y g y x  in the original system rather than to a prediction of the conditional 

expectations ( | )i iE y x . 

Motivating Example 
The -script BoxCoxBivariateRegression.r provides an application of the boxcox( ) function2 

from the MASS library which uses a grid search algorithm of the profile log-likelihood function (see 

Aitkin et al., 2009) to obtain an estimate for the best ̂  (see Figure 1) such that the regression residuals 
( ) ( ) ( )ˆ
i i ie y y     in the transformed system are approximately normal distributed. Therefore, the 

associated function call to evaluated the distribution of the residuals must explicitly account for the 

underlying regression model: findMaxLambda(lm(y~bcPower(x,lambdaX), 

data=myData)). Note that the independent variable has also been transformed so that its variation 

around its mean is approximately symmetric. The function call to identify its best transformation 

parameter ̂  is findMaxLambda(lm(x~1,data=myData)).  

Figure 2 displays the non-linear relationship between both variables in the original measurement system 

before the application of the Box-Cox transformation. Clearly, in the original system both variables are 

positively skewed and the residual variances increase as the independent variable increases. In the 

transformed system (see Figure 3) the relationship between both variables becomes almost linear as can 

be seen by the straight lowess smoother line, both variables are symmetrically distributed and the 

residual variation is now homoscedastic. Finally, in Figure 4 the prediction ( )ˆ
iy   was mapped back into 

the original units. The conditional median (green line) is lower than the conditional expectation (red 

line) because for any value of the independent variable, the conditional distribution of the dependent 

variable is positively skewed. For the bulk of the data points in the lower left-hand quadrant, lowess 

smoother in Figure 2 traces the conditional median in Figure 4. 

                                                           
1
 These notes are only for interested students. They are not test relevant. 

2
  Alternatively, the function powerTransform(lm.mod) in the car library finds that  -value, which brings the regression 

residuals the closest to the normal distribution.  
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Figure 1: Concentrated log-likelihood function of the Box-Cox 
transformation for the dependent variable income to achieve 

symmetrically distributed regression residuals.  

 
Figure 2: Linear regression line and lowess-smoother in original units with 
positively skewed dependent and independent variables. 

 
Figure 3: Relationship between both variables in the transformed system. 

The green line denotes the predicted values  ̂ 
   

. 

 
Figure 4: Conditional median and expectation prediction lines after the 
reverse Box-Cox transformation back into the original units. 

The Box-Cox Transformation 

It is required that all observations of    are strictly positive, that is, 0iy i  . The Box-Cox 

transformation is defined as  
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Note that in the limit 0   the Box-Cox transformation becomes 
0
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the limit calculus rule of l'Hôpital3, 
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The inverse transformation reversing the transformed values ( )

iy   back into their original units iy  is 

given by 
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The objective of the Box-Cox transformation is to convert the distribution of the regression residuals 
( ) ( ) ( )ˆ
i i ie y y      

a) to a symmetric and homoscedastic distribution and preferably even 

b)  to a normal distribution with  ( ) 2

( )0,ie N

 .  

This allows the robust estimation of the regression parameters  ( ) ( ) ( )

0 1 1
ˆ ˆ ˆ, , , K

     
 in the transformed 

system. The predicted values of the endogenous variable in the transformed system are ( )ˆ
iy  . These are 

conditional expectations ( ) ( ) ( ) ( ) ( )

1 , 1 0 1 1 1 , 1
ˆ ˆ ˆˆ | , ,i i i i K i K i Ky E y x x x x        

          given the set of 

exogenous observations  1 2 , 11, , , ,i i i Kx x x  , which may or may not be transformed themselves. 

Review: Properties of Median and Expectation 
Highly skewed distributions or distributions with outliers in one tail have a levering effect on the 

arithmetic mean making it potentially an invalid estimate for the central tendency of a distribution. In 

contrast, the median (and also the trimmed mean) is more robust because extreme observations or long 

tails do not “pull” the median away from the central tendency of the underlying distribution.  

 Recall that the mean minimizes the sum of squared deviations 2

1
min ( )

n

ii
y





 , that is, this 

expression becomes minimal for y  . Consequently, squaring the deviation of extreme 

observations exaggerates their large divergences even further. In order to mitigate these 

quadratic impacts and still minimize the sum of squared deviations, the mean needs to move 

towards the extreme observations rather than reflecting the central tendency of the underlying 

distribution. 

 In contrast, the median minimizes the sum of absolute differences 
1

min
n

ii
y





 , that is, this 

expression become minimal for mediany  . Therefore, the impact of extreme deviations remains 

                                                           
3
 The l'Hôpital (sometimes spelled l'Hôspital) rule states that       

    

    
       

       ⁄

       ⁄
 with        ⁄   . 

The limit of the later term is sometimes easier to evaluate. 
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comparable to that of typical deviations rather than becoming exaggerated as it is the case for 

the arithmetic mean. 

For highly skewed distributions the median has a smaller mean-square-error and is therefore a more 

precise measure of centrality. Only if the data are approximately normal distributed then the mean is a 

more efficient measure of central tendency than the median.  

Calibration of a Regression Model in a Transformed System 
Any time one or more of the conditions below affect the dependent or independent variables, a data 

transformation toward symmetry or preferably normality may be advisable: 

 An untransformed regression system may be influenced by extreme observations and/or heavy 

tails of any of its variables. Their impact enters the model calibration with a quadratic weight 

and thus gives extreme observations a large leverage. 

 The residuals may show a pattern of heteroscedasticity, which may be induced by asymmetric 

distributions of the underlying variables in the regression model. 

 The relationships among the untransformed variables may be non-linear and thus ordinary least 

squares will not perform well to capture the relationships among the endogenous variable and 

the set of exogenous variables. 

 The distribution of the regression residuals, which were obtained by a linear regression model, 

exhibits a high degree of skewness. 

In any of these cases modeling a linear regression system in the transformed domain with all variables 

and regression residuals being symmetrically distributed alleviates above problems and will lead to more 

robust estimates. 

In order to further the interpretation of the model it is advisable to reverse the transformation into the 

original data units after the model has been calibrated in the transformed domain. The independent 

variables and predicted values of the dependent variable are mapped back into their natural scales. The 

key question becomes how do we map the predicted values, which were obtained in the transformed 

regression system, back into the untransformed domain? There are two alternative approaches: 

 If we want to maintain the robust qualities of the transformed system then we need to express 

the original relationship in terms of conditional medians. 

 On the other hand, if we want to account for the original skewness and outliers then the 

conditional expectations should be used. 

The subsequent sections formally develop both reverse transformations. First it is shown that for any 

non-linear transformation        of a symmetrized variable   
   

 back into its original scale    the 

expectations differ         
   

      (    
   

 ), where    (    
   

 ) is in fact the expected median 

of   . Then the special case with     will be discussed. This leads to the log-normal distribution for 

which the exact expectation        
   

   can be given in analytical terms. Finally, for the general case of 
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a power normal distribution with     the expectation         
   

   is approximated using a Taylor 

series expansion.  

Properties of Transformed Density Functions 
Recall that a density function      of a continuous random variable   cannot be interpreted as 

probability per se, only the integral ∫        
   

   
 of the density function measures the probability 

               that   is within an interval            . 

The figure below, taken from Kennedy (1998, p. 36), demonstrates for a non-linear transformation 

( )Y g X how the density function ( )f x  of the original random variable X  changes to the density 

function *( )f y  of the transformed random variable Y  (note a minor misprint: the axis labels ˆ( )pdf   

and  ˆ( )pdf g   should be switched).  

 

Assume that the probability of observing x  in a very small neighborhood dx  around x  is ( )f x dx . The 

transformation changes this small neighborhood to dy , which is the absolute value of the range of y  

corresponding to dx . The absolute value is used in case the transformation is a decreasing function 

rather than an increasing function. We obtain therefore the equality: 

 

* *

*

( ) ( )   or  ( ( )) ( )

( ) ( )

f x dx f y dy f g x dg x

dx
f y f x

dy

   

  
. (1) 
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The term dx dy is the Jabobian, which ensures that the probabilities 
2 2

1 1

( )
*

( )
( ) ( )

g x x

g x x
f y dy f x dx     in 

the transformed and untransformed system are equal and that *( )f y  integrates to unity 

*( ) 1f y dy



  . In order to express the density *( )f y  just in terms of the argument Y  we need to 

make use of the inverse transformation 1( )x g y . This allows rewriting the density function (1) as 

  
 1

* 1
( )

( ) ( ) ,
d g y

f y f g y
dy



   (2) 

which is expressed solely in terms of the transformed argument y . In order to evaluate the Jacobian, 

the first derivative of the in inverse function  1( )d g y dy with respect to y  needs to be evaluated for 

each y  within the support of *( )f y .  

One can derive this rule easily by using the cumulative distribution function and the chain rule of 

differential calculus and noting that for the distribution function the equality ( ) ( ( ))
y

F x F g x


  will hold 

for a positively increasing function ( )g x : 

 

( ) ( ( ))

( ) ( )
( ) ( )

( ) ( )

d F x d F g x

d x d x

d F y d g x d y
f x f y

d y d x d x

d x
f y f x

d y



    

  

 

For negatively decreasing functions ( )g x  the absolute value d y  must be used. 

The implications for the quantiles and expectation are: 

 Quantiles of  : The quantiles of a distribution function just shift with the transformation so that 

the equality  Pr ( ) ( ) Pr( )g X g x X x    continues to hold. In particular, for the median 

1
2

Pr( )medianX X   we maintain the relationship  Pr ( ) ( ) Pr( )median mediang X g x X x   . 

 Expectation of  : In contrast, after the transformation ( )Y g X  has been performed the true 

expectation      1 1( ) ( )Y E Y y f g y d g y dy dy


 


      will not be identical to the 

transformed expectation of X unless the transformation ( )g  is a linear function. 
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Special Case: The log-normal Distribution with λ=0 

The density function: For 0   the transformed variable (0) ln( )i iy x  with follows a normal distribution 

(0) 2( , )i Y Yy N   . Then the untransformed (0)exp( )i ix y  variable will follow a log-normal distribution 
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The median of log-normal distribution is  exp( ) expmedian median Yx y    because the normal distribution 

of      is symmetric. The expectation and variance of log-normal distribution, respectively, are 
21

2
( ) exp( )Y YE X      and    2 2( ) exp( ) 1 exp 2Y Y YVar X        . 

Expected value in the regression model: For a regression model in the log-transformed system, the 

predicted conditional expectation (0)ˆ
iy  for each observation depends on the exogenous variables

(0) (0) (0) (0) (0)

1 , 1 0 1 1 1 , 1
ˆ ˆ ˆˆ | , ,i i i i K i K i Ky E y x x x x    

         . After reversing the Box-Cox 

transformation we get the exact predictions (0)

(0) 21
2

ˆ ˆexp( )i i e
y y     where  

    
  is the variance of the 

regression residuals       ̂ 
   

   
   

 in the transformed system.  

Variance heterogeneity in the regression model: The variance      ̂   (      
    
 )            

 ̂ 
   

  
    
   also depends on the predicted values  ̂ 

   
 and, therefore, is no longer constant. 

Consequently, the variances of the predictions  ̂  become heteroscedastic. 

The Power Normal Distribution for Arbitrary Transformation Values λ 

For any value for 0  with ( )

( ) ( )( , )i iy N

    we get the power normal density function of the 

inversely untransformed variable iy  by making use of equation (2), that is, 

    

2

11 ( )
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( ; , , ) | | 1 exp 1
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y
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The adjustment factor 1 K  is required because the power normal distribution depends on a truncated 

normal distribution (see Freeman and Modarres, 2006). 

For a transformed Box-Cox variable ( )Y   the median medianY  in the original units is simply given by 

 
1

( ) 1median medianY Y     . However, if we are interested in the expectation and the variance of an 

inversely transformed Box-Cox variable ( )Y   both statistics must be approximated through a Taylor-

series expansion 
1 2 1 3 1

2 3

( ) ( ) ( )1 1 2 31 1
2! 3!

( ) ( ) ( ) ( ) ( )
g a g a g a

a a a
g x g a x a x a x a R

     

  
              with   

being the remainder approximation error. For the inverse Box-Cox transformation, the Taylor-series 



Tiefelsdorf (January 2013): A Note on the Reverse Box-Cox Transformation  8 

approximation is developed for  1 ( ) ( ) 1( ) ( 1)i ig y y       around ( )

( )iy 

  up to the second degree 

term: 
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The moments of  
1

( ) 1Y
    are difficult to calculate, but the moments on the right side of the 

Taylor-series approximation can be evaluated. Taking the expectation on both sides of the 

approximation and noting that the expectation of a constant is equal to the constant 

   
1 1

( ) ( )1 1E
 

         
  

 as well as that the expectation operator is distributive over a 

summation, that is,    
( )

( ) ( )

( ) ( ) 0E Y E Y
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. 

The expectation adjustment factor highlights the difference between the median and the expectation. 

As expected, it is neutral when no transformation is applied, i.e., 1  . 

For the variance we focus just on the 1 degree term of the Taylor-series approximating because the 

evaluation of the variance of the second degree term becomes rather elaborated (see Tiwari and Elston, 

1999). The variance of the zero degree term is zero because it is not a random variable. Since the 

variance of ( )Var a X  is 2 2 2( )a Var X a     we obtain: 
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Substituting the predicted values ( )ˆ
iy   in the transformed system for ( )  and the estimated residual 

variance  ( ) ( )

1
ˆ ( )

n

i ii
y y n K 


   in the transformed system for 2

( ) , respectively, gives the 

approximations for ˆ( )iE y  and ˆ( )iVar y  in the original system. 
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Freeman and Modarres (2006) provide exact expectations and variances of the power normal density 

function for specific values of   through the evaluation of Chebyshev–Hermite polynomial expressions: 

  ( )E Y  ( )Var Y  
0  21

2
exp( )       2 2exp( ) 1 exp 2     

 
1 4     

4 22 43 31 1
4 8 4 256

1 1                  
2 4 68 6 4 28 3 1 21 1 1

2048 32 4 32 4 4
1 1 1           

 
1 3     

3 21 1 1
3 3 3

1 1             
2 46 4 25 4 1 1

243 9 3 3
1 1             

 
1 2   

2 21 1
2 4

1       
24 21 1

8 2
1      

 
1  1   2  

The parameters   and   refer to the transformed system. Their formula needs to be evaluated 

individually for each value of  . The second degree Taylor series approximations for the expectation are 

identically for  1 1
3 2

0, , ,1 and for 1
4

   they just differ by the summand 43
256

 . However, the first 

degree Taylor approximation for the variance differs substantially from Freeman and Modarres's exact 

moments except for  0,1 . 

Literature Overview 
The discussion above draws on the statistical derivations in  

Aitkin, Francis, Hinde and Darnell (2009). Statistical Modelling in R. Oxford University Press, pp 123-126 

and Kennedy, P. (1998). A Guide to Econometrics, 4th edition, MIT Press. 

Continue reading Aitken et al. beyond that section for an interesting application with a twist and a 

distinction between the Box-Cox transformation and link functions in the context of generalized linear 

models. 

You may also want to look at these original articles by Box and coauthors: 

Box, G. E. P. and Cox, D. R. (1964). An analysis of transformations (with discussion). Journal of the Royal 
Statistical Society B, 26, 211–252.  

Box, G.E.P. and Tidwell, P.W. (1962). Transformations of the independent variable. Technometrics, 4, 

541–50 

An extension of the Box-Cox transformation for not strictly positive iy  is the Yeo-Johnson family of 

transformations. See also the function yjPower( ) in the car library. For a discussion see 

Yeo and Johnson (2000) A new family of power transformations to improve normality or symmetry, 

Biometrika, 87:954-959 

A recent paper that develops the exact expectation and variance of the reverse Box-Cox transformation 
1( )g  by Chebyshev–Hermite polynomials from the perspective of a truncated normal distribution can 

be found at: 
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Freeman, J. and Modarres R. (2006). Inverse Box–Cox: The power-normal distribution. Statistics & 

Probability Letters, 76, 764–772 

The following paper develops the variance of a function of random variables in terms of a second degree 

multivariate Taylor-Series expansion and compares it to the Delta method which only uses a first degree 

Taylor expansion: 

Tiwari, H. K. and Elston, R. C. (1999). The Approximate Variance of a Function of Random Variables. 

Biometrical Journal, 41, 351-357 

 


